And on the fourth flight, I think it was on December 12, everything went beautiful. The drop was right on speed, and the chambers ignited when you flick the switch. The profile was beautiful. The only thing that happened, on the climb out, on all four chambers running and you’re really accelerating – you fly off of a little eight ball flight indicator for attitude reference. And, you have a pressure suite, you’ve got filament wires in the visor of your suite. You have to keep those hot to keep your visor from fogging up. I let the airplane get up a little bit steep. I was busy regulating the pressures in the chamber to get maximum thrust out of the engine, and I got the airplane just a little bit steep, probably pushing 65 degrees angle of attack rather than 45. As I went through 60,000 feet, it began to push the airplane over. There are a lot of things that happen to an airplane mechanically up there. You have liquid oxygen in a tank and, if go to zero G, flying the parabolic curve, at zero G that oxygen cavitates because there is nothing to hold it down in the bottom of the tank. And so you have to hold about a tenth of a G on the way over. I floated right on through 70,000 feet up to 80,000 feet, which was about 10,000 feet higher. I hung on, and I’m sitting there looking as the mach meter went up to about three. And as I went through something like 2.3 mach number, man we were really smoking. We were picking up about 31 miles per hour, per second. And I watched this thing, and as we went through about 2.3 mach number, the airplane began to yaw. I said, man, something’s not right. I pushed on rudder to try to get the nose back, and nothing happened, the airplane just kept yawing. Then, the outside wing, because of dihedral effect, begins coming up. Next I’m cranking on full aileron and full rudder, and nothing happens. The airplane rolled, inverted, pitched up, and when that happened, the canopy busted on it. And when that happened, the suit inflated. Then the airplane really got wound up in some snap rolls, and the data shows that we had a rotational rate of about 580 degrees per second, which is twice per second going around. And you get exposed to a lot of high Gs. Like we were getting 9 Gs positive, 2 Gs side load, 3 negative, 2 side load, 9 positive. You go through two cycles of each per second. And you really don’t know what’s going on other than, I figured that either the tail had come off the airplane or something had happened. So, I just pretty well rode it. You know, you see sky and ground flashing. You get rattled, but you never become unconscious. I just hung on to the airplane pretty well. The first thing that I recognized was that I came out with a tremendous inverted, negative G flat spin. Well, we spin airplanes all the time. So you recognize a characteristic airplane flat spinning, inverted. You can get it out by putting the aileron with the spin direction, and using the rudder to stop it, and make it fall through. And it did. And then the airplane flipped into a normal spin, which is an upright spin. I say normal because that’s the way normally an airplane spins, upright. It flipped into a normal spin, and I just popped the nose out with the elevator and opposite rudder to stop it and recover it. And when this happened, I was down, I was about fifty miles from Rogers Dry Lake, at 25,000 feet. I was sitting there looking and the pressurization was gone out of the cockpit. Part of the canopy was gone, my suit was inflated, it had kept me alive. I looked around, I finally spotted the lake bed and turned toward it. And from the time the airplane yawed and ran out of fuel up there at 2.5 mach number, till I popped it out of the spin at 25,000 feet, was only 51 seconds. But 51 seconds, if you will look at your watch, is a long time. And so I just glided on back to the base, and landed. And that’s the last flight I made in the airplane. And we never did take it above about mach two anymore.